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respect the symmetry of space inversion, so these particles are given
different names: neutrinos for helicity +1/2, and antineutrinos for helicity
—1/2.

Even though the helicity of a massless particle is Lorentz-invariant, the
state itself is not. In particular, because of the helicity-dependent phase
factor exp{io 6) in Eq. {2.5.42), a state formed as a linear superposition of
one-particle states with opposite helicities will be changed by a Lorentz
transformation into a different superposition. For instance, a general
one-photon state of four-momenta may be written

Yo = E"’5+\Pp,-4-1 + A lPp,——l )
where
2 2
loe |” + Ja|“=1.

The generic case is one of elliptic polarization, with |24 | both non-zero and
unequal. Circular polarization is the limiting case where either %, or %
vanishes, and linear polarization is the opposite extreme, with |24 | = |a_|.
The overall phase of 2, and x_ has no physical significance, and for linear
polarization may be adjusted so that o_ = o, but the relative phase is
still important. Indeed, for linear polarizations with o = &}, the phase
of a4 may be identified as the angle between the plane of polarization
and some fixed reference direction perpendicular to p. Eq. (2.5.42) shows
that under a Lorentz transformation A#,, this angle rotates by an amount
G(A,p). Plane polarized gravitons can be defined in a similar way, and
here Eq. (2.5.42) has the consequence that a lorentz transformation A
rotates the plane of polarization by an angle 20(A, p).

2.6 Space Inversion and Time-Reversal

We saw 1n Section 2.3 that any homogeneous Lorentz transformation is
either proper and orthochronous (i.e, DetA = +1 and A% = +1) or
else equal to a proper orthochronous transformation times either 2 or
F or PT, where # and ¥ are the space inversion and time-reversal
transformations
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It used to be thought self-evident that the fundamental multiplication rule
of the Poincaré group

U(A,a) UlA,a) = UAA Aa+ @)
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would be valid even if A and/or A involved factors of # or 7 or 27 .
In particular, it was believed that there are operators corresponding to 2
and 7 themselves:

P=U(20) T=U(T,0)

such that
PU(A,a)P ! = U(PAZ™, Pa), (2.6.1)
TUA T =U(TAT L, 7a) (2.6.2)

for any proper orthochronous Lorentz transformation A%, and translation
a*. These (ransformation rules incorporate most of what 1s meant when
we say that P or T are ‘conserved’.

In 1956-57 it became understood® that this is true for P only in the
approximation in which one ignores the effects of weak interactions, such
as those that produce nuclear beta decay. Time-reversal survived for a
while, but in 1964 there appeared indirect evidence’ that these properties
of T are also only approximately satisfied. (See Section 3.3.) In what
follows, we will make believe that operators P and T satisfying Eqs. (2.6.1)
and (2.6.2) actually exist, but it should be kept in mind that this is only
an approximation.

Let us apply Egs. (2.6.1) and (2.6.2) in the case of an infinitesimal
transformation, 1.e.,

Aty = 0%, + wt, at = €

with @, = —m,, and €, both infinitesimal. Using (2.4.3), and equating
coeflicients of w,, and €, in Eqgs. {2.6.1) and (2.6.2), we obtain the P and
T transformation properties of the Poincaré generators

PiJrop~! =i P P,OJ* (2.6.3)
pipp ! =iz, pPE, (2.6.4)
TigroT =17 07 o (2.6.5)
TiPPT ! =i7 PP¥. (2.6.6)

This is much like Eqs. (2.4.8) and {2.4.9), except that we have not cancelled
factors of i on both sides of these equations, because at this point we have
not yet decided whether P and T are linear and unitary or antilinear and
antiunitary.

The decision is an easy one. Setting p = 0 in Eq. (2.6.4} gives

PiHP '=iH,

where H = P? is the energy operator. If P were antiunitary and antilinear
then it would anticommute with i, so PHP~! = —H. But then for any
state ¥ of energy E > 0, there would have to be another state P~'¥ of
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energy —E < (. There are no states of negative energy (energy less than
that of the vacuum), so we are forced to choose the other alternative: P
is linear and unitary, and commutes rather than anticommutes with H.

On the other hand, setting p = 0 in Eq. (2.6.6) yields

TiHT '=—iH .

If we supposed that T is linear and unitary then we could simply cancel
the is, and find THT—! = —H, with the again disastrous conclusion that
for any state ¥ of energy E there is another state T ' of energy —E.
To avoid this, we are forced here to conclude that T is antilinear and
antiunitary.

Now that we have decided that P is linear and T is antilinecar, we
can conveniently rewrite Eqgs. (2.6.3)-(2.6.6) in terms of the generators
(2.4.15)~(2.4.17) in a three-dimensional notation

PIP~!l = 47, (2.6.7)
PKP! = K, (2.6.8)
PPP ! = —P, (2.6.9)
TIT™ = 1T, (2.6.10)
TKT! = 4K, (2.6.11)
TPT ! = P, (2.6.12)
and, as shown before,
PHP ' =THT '=H. (2.6.13)

It is physically sensible that P should preserve the sign of J, because at
least the orbital part is a vector product r X p of two vectors, both of which
change sign under an inversion of the spatial coordinate system. On the
other hand, T reverses J, because after time-reversal an observer will see
all bodies spinning in the opposite direction. Note by the way that Eq.
(2.6.10) is consistent with the angular-momentum commutation relations
J x J = iJ, because T reverses not only J, but also i. The reader can easily
check that Eqs. (2.6.7)-(2.6.13) are consistent with all the commutation
relations (2.4.18)+2.4.24).

Let us now consider what P and T do to one-particle states:
P:M>0
The one-particle states Wy, are defined as eigenvectors of P, H, and J3
with eigenvalues 0, M, and o, respectively. From Egs. (2.6.7), (2.6.9), and
{2.6.13), we see that the same must be true of the state P'Py ,;, and therefore
(barring degeneracies) these states can only differ by a phase

Plpk,o' = f?a\Pk,cr

with a phase factor (|#] = 1) that may or may not depend on the spin o.







