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respect the symmetry of space inversion, so these particles are given
different names : neutrinos for helicity +1/2, and antineutrinos for helicity
-1/2.

Even though the helicity of a massless particle is Lorentz-invariant, the
state itself is not . In particular, because of the helicity-dependent phase
factor exp(i a H ) in Eq. (2 .5 .42), a state formed as a linear superposition of
one-particle states with opposite helicities will be changed by a Lorentz
transformation into a different superposition . For instance, a general
one-photon state of four-momenta may be writte n

where

I X+I 2 + I U_ 11 = 1 .
The generic case is one of elliptic polarization, with I oc+ I both non-zero and
unequal . Circular po larization is the limiting case where either Y+ or x_
vanishes, and linear polarization is the opposite extreme, with a+ = la-1 .
The overall phase of ac+ and a_ has no physical significance, and for linear
polarization may be adjusted so that ac_ = a+, but the relative phase is
still important . Indeed, for linear polarizations with a_ = a+, the phase
of ac+ may be identified as the angle between the plane of polarization
and some fixed reference direction perpendicular to p. Eq . (2.5.42) shows
that under a Lorentz transformation A,, , this angle rotates by an amount
B(11> p ) . Plane polarized gravitons can be defined in a similar way, and
here Eq. (2 .5.42) has the consequence that a Lorentz transformation A
rotates the plane of polarization by an angle 20 (A , P) •

2.6 Space Inversion and Time-Reversa l

We saw in Section 2.3 that any homogeneous Lorentz transformation is
either proper and orthochronous (i .e., DetA :;-- +1 and AOO > +1) or
else equal to a proper orthochronous transformation times either : or
9- or Y g-, where 9 and JV are the space inversion and time-reversal
transformations
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It used to be thought self-evident that the fundamental multiplication rule
of the Poincare group
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would be valid even if A and/or A involved factors of ~P or °l or 503T .
In particular, it was believed that there are operators corresponding to
and ~F themselves :

such that

(2 .6 .1)
{ .G.2}

for any proper orthochronous Lorentz transformation 11P, and translation
aP . These transformation rules incorporate most of what is meant when
we say that P or T are 'conserved' .

In 1956-57 it became understaod8 that this is true for P only in the
approximation in which one ignores the effects of weak interactions, such
as those that produce nuclear beta decay . Time-reversal survived for a
while, but in 1964 there appeared indirect evidence9 that these properties
of T are also only approximately satisfied . (See Section 3 .3.) In what
follows, we will make believe that operators P and T satisfying Sys . (2-6-1)
and (2.6 .2) actually exist, but it should be kept in mind that this is only
an approximation .

Let us apply Eqs. ( 2. 6.1 ) and ( 2 .6.2) in the case of an infinitesimal
transformation, i .e .,

~ ~ ~ alt = ,U

with w. ,, _ -o),,, and e. both infinitesimal . Using (2 .4.3), and equating
coefficient s of r~),o¢ and eP i n Eqs . (2 .6 . 1 ) and ( 2 . 6.2 ) , we obtain the P and
T transformation properties of the Poincare generators

p i P{3p- 1 = i 4 PP Y ,

T iPP T-' = ?' .1 JU P P P .

(2.6.3 )
(2.6.4)
(2.6.5)

(2.6.6)

This is much like Eqs . (2.4.8) and (2.4.9), except that we have not cancelled
factors of i on both sides of these equations, because at this point we have
not yet decided whether P and T are linear and unitary or antilinear an d
antiunitary-

The decision is an easy one . Setting p = 0 in Eq . (2.6.4) gives

P i HPR t = i H ,

where H - P ° is the energy operator . If P were antiunitary and antilin e ar
then it would anticommute with i, so PHP -l = -H. But then for and
state T of energy E > 0 , there would have to be another state P-1 T of
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energy - E < 0. There are no states of negative energy (energy less than
that of the vacuum), so we are forced to choose the other alternative- P
is linear and unitary, and commutes rather than anticommutes with H .

On the other hand, setting p =Din Eq . (2 .6 .6 ) yields

T i HT-1 _ ----i H .

If we supposed that T is linear and un itary then we could simply cancel
the is, and find TAT-1 = -H, with the again disastrous conclusion that
for any state T of energy E there is another state T-1 'I' of energy -E .
To avoid this , we are forced here to conclude that T is antilinear and
an txu ra ita ry .

Now that we have decided that P is linear and T is antilinear, we
can conveniently rewrite Eqs. (2.6.3)-(2.6.6) in terms of the generators
(2.4.15)-(2.4 .17) in a three-dimensional notation

PIM P-1 = -K (2. 6.8)
PPP-1 = _P, (2.6.9)

TKTT' _ +K , (2.6. 1 1 )
TPT-1 = -P, (2.6.12)

and, as shown before,
PHP-1 = THT-1 = H. (2.6. 1 3 )

It is physically sensible that P should preserve the sign of J, because at
least the orbital part is a vector product r x p of two vectors, both of which
change sign under an inversion of the spatial coordinate system. On the
other hand, T reverses J, because after time-reversal an observer will see
all bodies spinning in the opposite direction. Note by the way that Eq .
(2 .6 .10) is consistent with the angular-momentum commutation relations
J x J = iJ, because T reverses not only J, but also i . The reader can easily
check that Eqs . (2. 6 .7 )-(2 .6.13) are consistent with all the commutation
relations (2 .4.1$)-(2 .4.24) .

Let us now consider what P and T do to one-particle states :
P :M> O
The one-particle states 'I'k,, are defined as eigenvectors of P . H, and J3
with eigenvalues 0, M, and a, respectively. From Eqs . (2.6.7), (2 .6.9) , and
(2 .6.13), we see that the same must be true of the state P`F'k, ,, and therefore
(barring degeneracies) these states can only differ by a phase

with a phase factor (I~ j = 1) that may or may not depend on the spin a .






